
Page 1 from 44 Status: 02/01/2025

MODULE MANUAL

Professional Software Engineering, MSc.

Master's programme (according to §33 LHG BaWü)

Reutlingen University
Faculty of Computer Science
Alteburgstr 150
72762 Reutlingen
https://www.hhz.de/en/studies/master/msc-professional-software-engineering

Page 2 from 44 Status: 02/01/2025

Table of contents

BRIEF DESCRIPTION AND OBJECTIVES OF THE STUDY PROGRAMME ... 3

MODULE OVERVIEW PROFESSIONAL SOFTWARE ENGINEERING (MSC.) 4

M 1 METHODS AND TECHNOLOGIES OF PROFESSIONAL PROGRAMMING 5

M 2 SOFTWARE ENGINEERING .. 9

M 3 DATABASE SYSTEMS .. 13

M 4 CLOUD COMPUTING .. 16

M 5 FRONT-END DEVELOPMENT ... 19

M 6 BACKEND DEVELOPMENT .. 23

M 7 SOFTWARE ARCHITECTURE .. 26

M 8 SOFTWARE PROJECT 1 .. 30

M 9 SOFTWARE PROJECT 2 .. 32

M 10/M 11 ELECTIVE MODULE 1 AND 2 ... 34

W1 Distributed Ledger Technology .. 34

W2 Digital Product Management ... 37

W3 Internet of Things ... 40

M 12 MASTER THESIS ... 43

Page 3 from 44 Status: 02/01/2025

Brief description and objectives of the study programme

Agile methods, DevOps, microservices and cloud computing have changed the job profile of software

developers. Specialised knowledge, skills and competencies are required to develop applications for

the cloud or to migrate to it. In order to truly utilise the advantages of the cloud, applications must be

programmed in such a way that they can be continuously revised, tested, built, automated in the cloud

and monitored. The strict separation of development and operation no longer exists - "you build it, you

run it" (DevOps). This enables new software architectures, such as microservices or serverless

computing, which in turn place new demands on the design and development of applications.

Graduates of the degree programme develop software using modern methods and tools, especially for

modern cloud environments.

In addition to the necessary technical and methodological knowledge, skills and competences,

graduates should be taught the following values and principles:

• We work in an agile manner and place customer benefit at the centre of our work.

• We emphasise quality in software engineering and apply corresponding principles.

• We are committed to responsible, ethical behaviour and respect users' right to data

protection.

An overview and detailed description of the modules can be found in the following sections.

Module overview Professional Software Engineering (MSc.)

Semester Master of Science degree

4

Master thesis

3

Compulsory elective
module 1

Compulsory elective
module 2

Software project 2

2

Front-end
development

Backend development

Software
architecture

Software project 1

Research paper, practical project or

professional practice (credit for pre-

study programme < 210 ECTS)

 Methods and

1
technologies of

professional

Software

Engineering
Database systems Cloud computing

 programming

ECTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 ECTS means approx. 30 hours of work (attendance and personal contribution)

Page 4 of 44

Page 5 from 44

M 1 Methods and technologies of professional programming

Module: Methods and technologies of professional
programming

Abbreviation: M 1

Subtitle:

Courses: Lecture

Module coordinator: Prof. Dr. Christian Kücherer

Lecturer(s): Prof. Dr. Christian Kücherer
Mr. Paul Lajer
Dr. Robin Braun

Language: English

Assignment to the curriculum: Professional Software Engineering, Master,
compulsory subject, 1st semester

Teaching form / SWS: Lecture, block course / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: None

Study/examination achievements/form of
examination:

Project work

Module objectives:

This course sets a standard of knowledge and expertise for all participants of the Master’s degree

programme with regard to the programming skills and the tool chain required for modern software

development. The course highlights the links to the Software Engineering course. In particular, participants

will learn what is important when developing source code and how the many different tools can be used

throughout the entire development cycle. In addition to the development of maintainable and

comprehensible code with the principles of clean code and continuous refactoring, The course covers

the use of test frameworks in the assurance of software quality as well as the complete infrastructure

for continuous software delivery through Continuous Integration and Continuous Deployment (CI/CD).

Page 6 from 44

Intended learning outcomes

Knowledge:

Participants in this module learn how current infrastructures and the tools can be used effectively and

efficiently in current software development projects. The main focus is two-fold. On the one hand, it is on

the methodological and conceptual foundations of current tools. On the other hand, it is on the practical

applications of such tools. The key skills that are taught are principles for object-oriented development,

development of high-quality source code, versioning strategies, use of test tools at different levels of

abstraction, continuous delivery and continuous deployment, use of software metrics and static code

analysis, code documentation, collaborative software development and development environments.

Various branching strategies, feature toggles, tagging and merging strategies are considered in the

versioning and configuration of source code.

Skills:

The participants

• Create and manage the requirements for a software system with the help of requirement
management tools and transfer them step by step into an executable system using an agile
approach.

• Create component-based software systems independently, while taking into account the
principles of classic design patterns.

• Apply the principles of clean code and clean architecture to create maintainable code.

• Manage created code with the help of version management systems and further develop the
code together in teams.

• Check created code functionally and non-functionally using test frameworks.

• Document created code.

• Apply the basics of architectural patterns practically in projects.

• Deliver software systems continuously as runnable applications with the help of continuous
integration, continuous delivery and continuous deployment, using the necessary
infrastructure.

Page 7 from 44

Expertise:

After completing the module, participants will be able to

LE# Learning outcome (LE) Tested by

LE1 Create stable, high-quality and maintainable source code,

taking into account design patterns, object- orientated

design and the SOLID principles.

Assessment task

LE2 Create the basic architecture of software systems and

develop software using suitable patterns.

Assessment task

LE3 Apply the principles of clean code and clean architecture

and document software in a meaningful way

Assessment task

LE4 Practical application of CI/CD methods, selection of suitable

tools for the problem and documentation of the entire

deployment pipeline.

Term paper and
presentation

LE5 Quality assurance with test frameworks and static analysis

using software metrics.

Assessment task

LE6 Development environments effectively and to solve the

problems of collaborative software development by using

suitable tools and methods.

Lecture-accompanying

exercise

LE7 Use versioning strategies and tools sensibly in projects. Lecture-accompanying

exercise

Contents:

At the beginning of the course, the participants work with the basic principles of modern software

development, apply software design patterns in order to structure their object-oriented systems and

provide them with functionality based on established standards (EU1). This results in stable, high-quality

and maintainable source code that simplifies the evolution of the system. Based on defined

requirements, participants create the basic architecture of a software system and use suitable pat-

terns (LO2). As a further theoretical module, the principles of clean code and clean architecture are

taught, which participants apply to a practical example. This is not only about improving the quality of

source code and the architecture that provides the structure, but also about documenting the software

code in a meaningful way (LO3). The state of the art is the continuous compilation and integration of the

components of a software system in order to prevent a creeping deterioration of the code. To this end,

tool chains that realise this deployment pipeline are selected by the participants and assembled into a

meaningful whole (EU4). Regression tests are used to check the freedom from side effects of changes in

order to ensure the continuous functionality of the overall system. Automated test frameworks are used

for this purpose, which participants select and use using a practical example (LO5). With the help of

Page 8 from 44

of collaboration and version management tools, participants learn to recognise the problems of

distributed software development and to take appropriate measures (LO6). Finally, the basics of different

versioning approaches and tools are taught so that parallel development on the same code base by

many developers is possible (LO7).

Media forms:

The teaching material consists of a slide script, which is available in electronic form, exercise sheets

and programme examples. Seminar-style teaching with whiteboard, PC projector and presentation

slides, in which examples of the theoretical content are illustrated as well as demonstrations of sample

programmes and interactive programme development. Participants work individually or in groups on

exercises on the topic of modern software development under the supervision of lecturers. Another

element is the development by participants as an inverted classroom: participants have to work on a sub-

area of the complete tool infrastructure based on a defined problem. The knowledge gained is then

passed on to the other participants in a presentation with a 90-minute workshop.

Literature:

• Alur, Deepak; Crupi, John; Malks, Dan (2003): Core J2EE patterns: best practices and de- sign

strategies, 2nd edition, Upper Saddle River, NJ: Prentice Hall PTR; Palo Alto, Calif., Sun Microsystems
Press.

• Duvall, Paul M.; Matyas, Steve and Glover, Andrew (2010): Continuous integration: improv- ing
software quality and reducing risk, 5th edition, Upper Saddle River, NJ; Munich [u.a.] : Addison-
Wesley

• Fowler, Martin (2000): Refactoring: how to improve the design of existing software. Munich
[et al.], Addison Wesley,

• Fowler, Martin (2008): Patterns of enterprise application architecture, 14th edition. Boston,
Mass.; Munich [et al.], Addison-Wesley

• Gamma, Erich (2005): Entwurfsmuster: Elemente wiederverwendbarer objektorientierter
Software, Munich [u.a.], Addison-Wesley

• Humble, Jez and Farley, David (2011): Continuous delivery: reliable software releases through
build, test, and deployment automation, 1st edition, Upper Saddle River, NJ ; Mu- nich:
Addison-Wesley

• Link, Johannes; Fröhlich, Peter (2002): Unit Tests with Java: the test-first approach, 1st edition,
Heidelberg, dpunkt

• Loeliger, Jon (2009): Version Control with Git: Powerful tools and techniques for collabora- tive
software development, O'Reilly Media.

• Martin, Robert C. (2009): Clean code: Refactoring, patterns, testing and techniques for clean
code, 1st edition, Heidelberg; Munich; Landsberg; Frechen; Hamburg, mitp

• Martin, Robert C. (2014): Clean Coder: Rules of behaviour for professional programmers, 1st
edition Heidelberg, mitp.

• Tabaka, Jean (2006): Collaboration Explained: Facilitation Skills for Collaborative Leaders. Agile
Software Development Series, Addison Wesley.

Page 9 from 44

M 2 Software Engineering

Module: Software Engineering

Abbreviation: M 2

Subtitle:

Courses: Lecture

Module coordinator: Prof. Dr. Christian Decker

Lecturer(s): Prof. Dr. Christian Decker
Prof. Dr. Christian Kücherer
Dominik Neumann

Language: English

Assignment to the curriculum: Professional Software Engineering
Master, compulsory subject, 1st
semester

Teaching form / SWS: Lecture / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: None

Study/examination achievements/form of
examination:

Term paper, presentation

Module objectives:

Targeted and systematic management of software development is crucial to the success of a software

project.

The module introduces the engineering approach to software engineering along the software life cycle,

the associated processes and process models. One focus is on agile process models. Requirements

engineering and the connections to the other phases of the software life cycle play a central role in the

module. Requirements form the basis for the creation of the system’s scope and function, and they are

systematically collected and documented from and with stakeholders. The resulting specification

describes the expected functionality and is the basis for quality assurance, e.g. testing and test processes.

Other forms of quality assurance include organisational measures such as the introduction of regular

reviews or the implementation of the V-model of testing, which in turn influence the system design

and software modelling activities.

Page 10 from 44

Finally, the module teaches the basics of strategic Domain Driven Design (DDD) in order to create an

important foundation for the development and understanding of modern and frequently used

approaches to software architectures for innovative software products. The application of this

approach is introduced to the module participants through a practical simulation of a customer-

oriented environment. With the strategic Domain Driven Design, the Software Engineering module also

distinguishes itself from the tactical Domain Driven Design of the Software Architecture module.

Intended learning outcomes

Knowledge:

Participants acquire knowledge and experience of engineering methods in the creation and

implementation of software projects and knowledge of different systematic procedures in the

development of software. They will learn about important current standards and procedures for

defining the requirements of a system, such as common elicitation techniques and forms of

documentation for software specifications. For implementation, the module provides participants with

know-how in strategic DDD and system design. They learn the methods of event storming, context

mapping and ubiquitous language. Finally, participants are trained in the practices of end- to-end quality

assurance. This includes software quality assurance through test-driven methods and organisational

methods such as the V-model of testing and documentation artefacts.

Skills:

In this module, participants acquire the skills of a software engineer and can apply them. That is,

selecting suitable process models, adapting them if necessary and then proceeding in a targeted manner in

software development; specifying and documenting software in a systematic and comprehensible process

and ensuring quality assurance; creating a suitable system design using the practices and methods of

strategic DDD for customer-specific software projects and making it feasible.

Expertise:

Participants are able to successfully specify and design complex software projects. They qualify to take

responsibility for software development and to continue to develop successful and realisable software

projects. In the module, participants gain a competent grounding in the development of modern and

frequently used approaches to software solutions in innovative software products, for example with

cloud-native application designs and the use of microservice architectures. Participants gain an

understanding of the conflicting priorities of ethics in software engineering and learn how to apply ethical

principles.

Page 11 from 44

LE# Learning outcome (LE) Tested by

LE1 Processes and procedure models of plan-driven and agile software

development

Term paper

LE2 Requirements and requirements engineering process, elicitation

techniques and documentation, SW quality assurance,

organisational quality assurance and static testing,

e.g. reviews

Term paper

LE3 Use cases, system design and definition of system boundaries;

test specifications, test-driven development (TDD); V model of

testing

Term paper

LE4 Strategic domain-driven design (DDD), identification of

specialised domain intersections (bounded context); methods

and practices: event storming, context mapping, ubiquitous

language

Presentation

LE5 Simulation of DDD practices in a customer-facing environment Presentation

Contents:

• Processes and procedure models of software engineering
• Agile vs. plan-driven processes
• Requirements and requirements engineering process
• Software quality assurance, organisational quality assurance and static testing, e.g. reviews
• Test specifications, test-driven development (TDD), V model of testing
• Specify survey techniques and quality requirements
• Documentation standards and their quality assurance
• Specification of use cases and system boundaries
• Strategic Domain Driven Design (DDD) and identification of bounded context
• Methods and techniques of strategic DDD: Event Storming, Context Mapping, Ubiquitous

Language

• Simulation of strategic DDD practices in a customer-facing environment
• Ethics in software engineering based on current ethical guidelines for software development

Exercises are carried out in changing team compositions. The aim is to deepen the content and open up

different perspectives.

Media forms:

Lecture, exercises, script with the PDF of the lecture slides, exemplary publications, simulation of a

customer-oriented environment

Page 12 from 44

Literature:

• Sommerville, Ian. Software Engineering, Pearson Studium; Edition: 9. Aktual. (1 March 2012),
ISBN-10: 3868940995

• Patton, Jeff. User Story Mapping- Understanding User Needs as the Key to Successful Products
, O'Reilly; Edition: 1 (30 April 2015) ISBN-10: 3958750672

• Ludewig, J., Lichter H.: Software Engineering - Grundlagen, Menschen, Prozesse, Techni- ken.
dpunkt.verlag Heidelberg, 2007. ISBN 3-89864-268-2

• Klaus Pohl, Chris Rupp: Basiswissen Requirements Engineering: IREB Foundation Level,
dpunkt.verlag Heidelberg

• Lauesen S: Software Requirements: Styles & Techniques: Styles and Techniques, 2002,
Addison-Wesley, ISBN 978-0201745702

• Spillner A, Linz T: Basiswissen Softwaretest: Education and Training for Certified Testers -
Foundation Level according to ISTQB Standard, 5th edition 2012, dpunkt.verlag GmbH; ISBN
978- 3864900242

• Vernon, Vaughn, Domain-Driven Design kompakt, (German translation by C. Lilienthal), dpunkt
Verlag 2017, ISBN: 978-3864904394

Further literature will be announced during the lecture.

Page 13 from 44

M 3 Database systems

Module: Database systems

Abbreviation: M 3

Subtitle:

Courses: Lecture

Module coordinator: Prof. Dr. Peter Hertkorn

Lecturer(s): Prof. Dr. Peter Hertkorn

Language: English

Assignment to the curriculum: Professional Software Engineering
Master, compulsory subject, 1st
semester

Teaching form / SWS: Lecture, block course / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: None

Study/examination achievements/form of
examination:

Project work

Module objectives:

Participants acquire knowledge about the functionality of modern database systems and different database

technologies. They understand the underlying principles, methods and techniques and are able to apply

their theoretical knowledge in practice. In the further course of the programme, successful completion

of the module should ensure that participants are able to select suitable database technologies for given

problems and to create and use the various database systems with the help of database and

programming languages.

Page 14 from 44

Intended learning outcomes

Knowledge:

The participants:

• know methods for accessing a database from an application programme.
• are able to describe methods for migrating and versioning data.
• know methods for storing semi-structured data.
• can describe concepts of recent developments in database systems and explain the

differences to relational database systems.

• are able to explain the properties of distributed systems with regard to database systems.

• know the properties of document-orientated databases and can describe and evaluate them.

• can explain the properties of key value databases.

• are able to explain the properties of graph databases.

• know the properties of column-orientated databases.

• can describe and evaluate different methods for scaling database systems.

Skills:

Participants formulate queries and changes to relational databases from an application programme.

They apply methods for migrating and versioning data. Participants create database schemas and queries

for semi-structured data using the XML extensions of the relational model. They analyse the requirements

for given problems and select a suitable form of NoSQL database. Participants create data models for the

different types of NoSQL databases and create queries and changes to the NoSQL databases using

suitable database languages. Participants apply methods for scaling database systems.

Expertise:

After completing the module, participants will be able to

LE# Learning outcome (LE) Tested by

LE1 Methods for accessing a database from an application
application programme.

Artefact

LE2 Methods for the migration and versioning of data
turn to.

Artefact

LE3 Modelling alternatives when creating the database
to evaluate the results.

Artefact

LE4 Databases for different data models with data
bank languages.

Artefact

LE5 Formulate queries to the database for given requirements
and to develop alternative options for queries to the
database.
evaluate the database and assess its performance.

Artefact

Page 15 from 44

LE6 Evaluate different database technologies for a given use
case and select a suitable database.
technology.

Artefact

LE7 Current developments in the field of database systems
to judge and appropriate.

Artefact

Contents:

In the lecture, the knowledge of the relational model is deepened (LE1) and extended by the use of methods

for migration and versioning of data (LE2). In addition to classic relational database systems, the XML

extensions of the relational as well as the different types of NoSQL databases are covered in detail and

their properties are compared with those of relational database systems (EU3-6). Access to databases

from an application is presented and explained using example programmes (EU1). Furthermore, recent

developments in the field of database systems are presented and their properties are compared with

those of the database systems covered (LO7). In the practical implementation, care must be taken to

ensure that industry tools are used in the acquisition of practical knowledge.

Media forms:

The teaching material consists of a slide script, which is available in electronic form, exercise sheets

and programme examples. Seminar-style teaching with whiteboard, PC projector and presentation

slides, in which examples of the theoretical content are illustrated as well as demonstrations of sample

programmes and interactive programme development. Participants work individually or in groups on

exercises on the subject of database systems under the supervision of the lecturer.

Literature:

• Ambler, Scott W. and Pramodkumar J. Sadalage (2011): Refactoring Databases:
Evolution- ary Database Design. Addison-Wesley.

• Edlich, Stefan and Achim Friedland (2011): NoSQL: Getting started in the world of non-
relational Web 2.0 databases. 2nd edition. Hanser.

• Fowler, Adam (2015). NoSQL for Dummies. Dummies Tech.
• Harrison, Guy (2015): Next Generation Databases: NoSQL, NewSQL, and Big Data. Apress.
• McCreary, Dan and Ann Kelly (2013): Making Sense of NoSQL: A Guide for Managers and the Rest

of Us. Manning.

• Perkins, Luc et al (2018): Seven Databases in Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement. 2nd edition. O'Reilly.

• Robinson, Ian et al (2015): Graph Databases: New Opportunities for Connected Data. 2. Edition.
O'Reilly.

• Sadalage, Pramod J. and Martin Fowler (2012): NoSQL Distilled: A Brief Guide to the Emerg- ing
World of Polyglot Persistence. Addison-Wesley.

• Sullivan, Dan (2015): NoSQL for Mere Mortals. Addison-Wesley.
• Trelle, Tobias (2014): MongoDB: The practical introduction. Dpunkt.
• Vonhoegen, Helmut (2018): XML: Getting started, practice, reference. 9th edition. Rheinwerk

Compu- ting.

Page 16 from 44

M 4 Cloud computing

Module: Cloud computing

Abbreviation M 4

Courses: Lecture

Module coordinator: Prof. Dr. Marcus Schöller

Lecturer(s): Prof. Dr. Marcus Schöller
Prof. Dr. Wolfgang Blochinger
André Lindenberg

Language: English

Assignment to the curriculum: Professional Software Development Master, compulsory
subject, 1st semester

Teaching form/SWS: Lecture / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: none

Recommended prerequisite:

Study/examination achievements/
form of examination:

Project work

Module objectives:

Cloud computing is now a central component of corporate IT and also enables a variety of new digital
business models and digital products. In this module, participants will be familiarised with key aspects
of cloud computing. In particular, they should acquire comprehensive knowledge of the design,
development and operation of distributed cloud services and applications.

Intended learning outcomes:

Knowledge:
After successfully completing this module, participants will have knowledge of the key principles and
characteristics of cloud computing. They know the basic characteristics of cloud services and their
delivery models and have developed an understanding of technical, organisational, commercial and
security-relevant aspects of cloud computing. They have in-depth knowledge of cloud architecture
patterns, programming tools and platforms and their areas of application.

Page 17 from 44

The participants have a good understanding of the fundamental laws, regulations and strategies in data
protection.

Skills:
Participants will be able to assess typical service and delivery models with regard to case studies. They
will be able to analyse the requirements of (server) services and develop and evaluate suitable
deployment variants. These variants range from in-house server solutions to hybrid cloud models and
pure cloud solutions. To do this, they apply a range of learned medthods. Based on these requirements,
participants will be able to design and develop services that utilise the characteristics of the cloud.
Furthermore, participants will be familiar with the details of cloud environments, which will enable
them to compare the different deployment variants in greater depth. Participants will therefore be
able to analyse and evaluate the solutions holistically and thus make technically sound decisions for
service provision. They will also be able to analyse cloud applications with regard to data protection
aspects so that they can take the appropriate (technical) measures when designing and implementing
these applications.

Expertise:

LE# Learning outcome Tested by

LE1

Understand and differentiate cloud business
models (IaaS, PaaS, SaaS) and be able to apply
them

Project work

LE2
Relate components and their tasks in a cloud
architecture

Project work

LE3
Understand and evaluate operational aspects of a
cloud infrastructure

Project work

LE4
Understand and apply software development
methods for a cloud platform

Project work

LE5
Analyse cloud applications with regard to legal
data protection aspects

Project work

Contents:

The service models Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS) are presented from both the provider's and the user's perspective. The focus here is on
the topics of software design and development for the cloud as well as a basic understanding of cloud
environments. The public cloud, private cloud, hybrid cloud and community cloud delivery models are
explained using case studies. Technical, organisational, commercial and security-related aspects of
cloud computing are covered, evaluated and discussed in detail. Data protection concepts and
regulations are presented and organisational and technical measures for the protection of personal
data are discussed.

Media forms:

Seminar-style lecture, slides and blackboard notes; case studies in small groups.

Page 18 from 44

Literature:

• Antonopoulos, Nick; Gillam, Lee (2010): Cloud Computing. Principles Systems and Ap-
plications. London: Springer London (SpringerLink: Books, 0).

• Baun, Christian; Kunze, Marcel; Nimis, Jens; Tai, Stefan (2011): Cloud Computing. Web-based
dynamic IT services. Berlin, Heidelberg: Springer Berlin Heidelberg (SpringerLink : Books).

• Buyya, Rajkumar (2011): Cloud computing. Principles and paradigms. Hoboken, NJ: Wiley
(Wiley series on parallel and distributed computing).

• Fehling, Christoph; Leymann, Frank; Retter, Ralph; Schupeck, Walter; Arbitter, Peter (2014):

Cloud Computing Patterns. Fundamentals to Design, Build, and Manage Cloud Applications.

Vienna: Springer.

Page 19 from 44

M 5 Front-end development

Module: Front-end development

Abbreviation: M 5

Subtitle:

Courses:

Module coordinator: Prof. Dr. Natividad Martínez Madrid

Lecturer(s): Prof. Dr. Natividad Martínez Madrid
Prof. Dr. Peter Hertkorn
Ralf Kretzschmar-Auer
Matthias Gutbrod

Language: English

Assignment to the curriculum: Professional Software Engineering
Master, compulsory subject, 2nd
semester

Teaching form / SWS: Lecture 4 SWS

Labour input: Classroom study: 60 hours
Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: Methods and technologies of professional
programming

Study/examination achievements/form of
examination:

Project work

Module objectives:

The module addresses the topic of user-centred front-end development, both from a methodological

and a technical perspective. Students gain knowledge of the basic steps involved in designing a frontend.

They understand what good interaction between frontend and backend looks like, can design frontend

architectures and apply the relevant technologies and frameworks. Students design mobile frontends

and familiarise themselves with the characteristics of mobile platforms. After successfully completing the

module, students will be able to design a suitable frontend for given problems and develop it with the

help of different technologies.

Page 20 from 44

Intended learning outcomes

Knowledge:

• Basics of communication psychology for UX design: visualisation, colours/images/animations,
behaviour, target groups, user guidance, error tolerance, feedback to the user.

• Able to describe the characteristics of barrier-free interactions.

• Conceptual tools of UX design: context navigation maps, screen flows, paper
prototypes.

• Basics of responsive design / mobile-first approach.

• Basics of component-based design in the front end and can describe the methods of
interaction between the front end and back end.

• Basics of programming front ends based on web technologies.

• Able to describe and evaluate the characteristics of modern frameworks for front-end
development.

• Understaningd of various design patterns that are used in the development of front ends.

• Characteristics of mobile devices as front-end platforms.

• Able to explain and evaluate the differences between native and web-
based/cross-platform mobile frameworks.

• Able to describe the special features of front-end development on native frameworks.

Skills:

• Develop a concept for a given task.

• Apply learnt UX techniques in the prototyping of front ends (desktop/mobile device).

• Implement a UX design prototype: Design interactions between frontend and backend,
perform error handling, mock up the backend if necessary and put the software into
operation on a server.

• Create front ends based on web technologies.

• Use suitable frameworks for front-end development.

• Analyse the requirements for given problems and select suitable technologies for
implementation.

• Apply design patterns in the development of front ends.

• Compare different mobile native or cross-platform frameworks under certain requirements.

• Implement a mobile front end for given tasks on the basis of cross-platform and native
platforms.

Page 21 from 44

Expertise:

After completing the module, students will acquire abilities and knowledge regarding:

LE# Learning outcome (LE) Tested by

LE1 methods for modelling UX designs. Project work

LE2 UX-based prototypes of front ends. Project work

LE3 frontends with the help of web technologies. Project work

LE4 alternatives in the design and realisation of components. Project work

LE5 frameworks for front-end development. Project work

LE6 frameworks for cross-platform mobile front-end development. Project work

LE7 aspects of native mobile frontends. Project work

Contents:

In the lecture, the basics of user-centred design (UX design) are explained through an introduction to

communication psychology. Different methods for user-centred modelling of frontends are addressed

and implemented by the students in a concrete example (LO1). Students then learn techniques for

prototyping frontends in interaction with (possibly mocked-up) backends. The modelled UX frontend is then

implemented as a prototype (LO2). Different web technologies for the development of frontends are

discussed on the basis of various problems (LO3). Alternatives are analysed and evaluated during the

design process and proven solutions are discussed (LO4). The students then apply the knowledge they

have acquired independently when solving exercises and creating frontends with the help of suitable

frameworks (LO5). From the outset, students are familiarised with the development of mobile front-

ends using the responsive design/mobile first approach. Students also learn about the possibilities of

integrating the functionality and properties of the native framework of the end device using the cross-

platform approach (e.g. React Native) (LO6). You will analyse and evaluate the advantages and

disadvantages of web-based frontends versus native mobile frontends. You will then cover the basics of

native mobile programming (e.g. Android) by analysing examples from selected subject areas (LO7).

Page 22 from 44

Media forms:

The teaching material consists of a slide script, which is available in electronic form, videos, examples

of signatures and programmes and practical tasks. The seminar-style teaching with whiteboard, PC

projector and presentation slides, which include examples of theoretical content. It is combined with practical

parts and demonstrations of sample programmes as well as interactive design and programme

development. Students work on tasks individually or in groups with supervision from the lecturer.

Literature:

• Banks, Alex and Eve Porcello (2017): Learning React: Functional Web Development with React
and Flux. O'Reilly.

• Beyer, Hugh and Karen Holtzblatt (1998): Contextual Design: Defining Customer-Cen- tered
Systems. Morgan Kaufmann Publishers.

• Constantine, Larry and Lucy Lockwood (2004): Software for Use: A Practical Guide to the Models
and Methods of Usage-Centred Design. 4th edition. ACM Press.

• Flanagan, David (2011): JavaScript: The Definitive Guide. 6th edition. O'Reilly.
• Godbolt, Micah (2016): Frontend Architecture for Design Systems: A Modern Blueprint for

Scalable and Sustainable Websites. O'Reilly.

• Heimann, Monika and Michale Schütz (2017): How design works: Principles of
successful design. Rheinwerk publishing house.

• Krug, Steve (2014): Don't make me think! Web & Mobile Usability: The intuitive web. mitp Verlag.

• Nielsen, Jakob (2001): Designing Web Usability. New Riders Publishing
• Philips, Bill et al (2017): Android Programming: The Big Nerd Ranch Guide. 3rd edition. Pearson

Technology Group.

• Shneiderman, Ben et al. (2017): Designing the User Interface: Strategies for Effective Human-
Computer Interaction. 6th edition. Pearson.

• Tidwell, Jenifer (2010): Designing Interfaces: Patterns for Effective Interaction Design. 2. Edition.
O'Reilly.

• Vollmer, Guy (2017): Mobile App Engineering. dpunkt Verlag.
Wolf, Jürgen (2016): HTML5 and CSS3: The comprehensive handbook for learning and reference. 2nd

edition. Rheinwerk Verlag.

Page 23 from 44

M 6 Backend development

Module: Backend development

Abbreviation: M 6

Subtitle: Compulsory elective module

Module coordinator: Prof. Dr. Martin Schmollinger

Lecturer(s): Mr. Marcus Schießer
Prof. Dr. Martin Schmollinger

Language: English

Assignment to the curriculum: Compulsory module 2nd semester

Teaching form / SWS: Lecture with integrated exercises / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: All modules from semester 1

Study/examination achievements/form of
examination:

Project work

Module objectives:

Enterprise applications have become more granular in recent years and are operated on cloud

platforms. Heavyweight, monolithic applications are being replaced by a large number of smaller services

that can be developed and put into production independently of each other. The resulting software systems

are distributed systems consisting of a large number of interacting services. This division is intended to

prevent the architecture from decaying and ensure that company applications remain maintainable

and expandable in the long term.

The aim of the module is to teach participants methods, concepts, patterns, technologies and tools that can

be used to develop backend services for these architectures. Participants practice the imparted knowledge

through integrated project work.

Page 24 from 44

Intended learning outcomes

Knowledge:

Knowledge of flexible software architectures for enterprise applications and current variants of backend

services. Participants will understand basic concepts and patterns of programming platforms and

frameworks for backend services and have practical knowledge of at least one specific programming

platform or framework (currently Go). They will learn different styles and technologies for the

communication of different services. They will become familiar with various interface technologies and

know the rules for good API design during development. They will be familiar with test architectures

and test strategies for building services, as well as the basics of their validation. They also will know how

to create the prerequisites for backend services for provision in the cloud.

Skills:

Participants will be able to design and develop backend services for a technical scenario. They use current

development tools and methods as well as design patterns and secure the services as required. They

are able to select and use the appropriate communication styles for the use case. They can integrate

other services and systems when implementing a service. The quality of the services is ensured by

designing and implementing a suitable test strategy and by adhering to guidelines for API design and

programming. They are able to create the prerequisites for a fully automated build, test and deployment

process that provides the service in the cloud (e.g. a PaaS).

Expertise:

LE# Learning outcome (LE) Tested by

LE1 Experience with professional software development and

operating environments for backend services.

Project work

LE2 Practical application of general concepts and patterns of

programming platforms/frameworks for the development

of backend services.

Project work

LE3 Reflection and application of non-functional aspects of

backend services (e.g. security, quality of source code, well

thought-out API design).

Project work

LE4 Practical application of general test procedures to ensure

functional aspects of the services, as well as creating the

prerequisites for deployment in the cloud.

Project work

LE5 Creation of your own backend service with a current

framework, possibly with the integration of further services

Project work

Page 25 from 44

 using suitable communication styles and interface

technologies

Contents:

• Motivation: Flexible software architectures for enterprise applications.

• Professional software development environment for backend services (e.g. IDEs, build tools,
version management).

• Basic concepts of programming platforms for backend services (using Go as an
example).

• Styles of inter-service communication

• API design guidelines.

• Test concepts, architectures and technologies.

• Basic security concepts and technologies.

• Containerisation of the backend services.

Media forms:

The module consists of a seminar-style lecture and integrated exercises on the lecture content. The

material for the lectures is available in electronic form: Lecture slides, exercise sheets with exercises and

code repositories with examples and solutions.

Literature:

• Bodner, Jan (2021). Learning Go - An idiomatic approach to real-world Go programming.
1st Edition, O'Reilly.

• Newman, Sam (2021). Building Microservices - Designing fine-grained systems. 2nd Edition O'Reilly.

• Titmus, Matthew A. (2021). Cloud Native Go - Building Reliable Services in Unreliable En-
vironments. O'Reilly.

• Köhler, Kristian (2021). Microservices with Go - Concepts, Tools, Best Practices.
Rheinwerk Computing.

Page 26 from 44

M 7 Software architecture

Module: Software architecture

Abbreviation: M 7

Subtitle:

Courses: Lecture

Module coordinator: Prof. Dr. Christian Kücherer

Lecturer(s): Prof. Dr. Christian Kücherer
Prof. Dr. Jürgen Münch
Markus Großmann

Language: English

Assignment to the curriculum: Professional Software Engineering, Master,
compulsory subject, 2nd semester

Teaching form / SWS: Lecture / 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: Methods and technologies of professional
programming, software engineering

Study/examination achievements/form of
examination:

Project work

Module objectives:

The aim of the software architecture course is to impart the basic knowledge in the field of software

architectures for a deeper understanding of different forms of software architectures. The focus is on

the development of software structures, orientated towards the domain in which the software system is

later to be used. Detailed knowledge of non-functional requirements is of great importance, as it allows for

decisive for product quality and has a significant influence on software architecture. Important aspects

of modern software systems are fast and lightweight development as well as the reusability of

functionality. For this reason, the course looks at various component technologies in the context of

software architecture. In particular, participants deal with different types of architecture and their skills

are deepened through practical application. As software architectures are immaterial and therefore

difficult to grasp, the participants use modelling languages and visualisation techniques to model and

illustrate software architectures.

Page 27 from 44

The most important methods for analysing architectures are also taught. Modern values and

requirements for software architectures are conveyed by discussing the criteria and characteristics of

long-lasting architectures and their documentation. Participants consider and analyse aspects of

further development using the principles of evolutionary architectures.

Intended learning outcomes

Knowledge:

• Basic understanding of the principles of domain-driven design

• Knowledge of different component technologies

• Understanding the influence of non-functional requirements on software architectures

• Knowledge of the procedure for finding an architecture

• Basic architecture patterns, in particular architecture layers, reactive and micro-service
architectures.

• Understanding the advantages and application of modelling languages and architecture
visualisation with software cities, software tomographs and other software imaging tools.

• Knowledge of methods for analysing architectures

• Knowledge of relevant standards for the documentation of architectures

Skills:

• Participants are able to independently design component-based software architectures
according to given domain-specific requirements and quality requirements.

• Refinement of non-functional requirements during the design phase.

• Comparison and selection of different architectural patterns

• Application of modelling languages and tools for the visualisation of software
architectures and interpretation of the results.

• Independent implementation of architecture assessments for the validation of software
architectures.

• Application of templates and standards for the documentation of architectures.

Expertise:

After completing the module, participants will be able to

LE# Learning outcome (LE) Tested by

LE1 Analyse and classify domain-specific and non-functional

requirements.

Artefact

LE2 components and document their interfaces. Artefact

Page 28 from 44

LE3 independently design software architectures based on

requirements and different procedures for architecture

development.

Artefact

LE4 to be able to assess and apply alternatives when using

architectural patterns.

Artefact

LE5 apply methods and procedures for modelling and visualising

software architectures and interpret the results.

Artefact

LE6 To be able to carry out an evaluation of a software

architecture using suitable methods.

Artefact

LE7 document software architectures using templates and

standards.

Artefact

Contents:

At the beginning of the course, participants are immersed in the principles of domain-driven design

and deepen their knowledge of non-functional requirements with regard to their relevance for the quality

of a software system (LO1). By learning the principles of component technologies and component

frameworks for the realisation of system modules, participants apply these principles to a given

problem (LO2). As a further theoretical module, the module teaches various methods for finding an

architecture directly using examples. Based on the requirements, a new architecture is defined according to

TOGAF, Zachman, the 4+1 model according to Kruchten, and the C4 model for software architectures, and

the design decisions are justified (LO3). Important architecture patterns such as layers, direction-based

and reactive architectures and microservice architectures are then considered and discussed.

Participants discuss central concepts such as monitoring, tracing and scaling of architectures as well as

principles of data management (EU4). Furthermore, the course helps participants visualize the

architecture of an existing open source system using a software tomograph or software cities. The

insights gained will be presented and discussed by the participants (LO5).

The principles of architecture assessment according to ATAM or SAAM are taught for the evaluation of

software architectures. Participants learn how to carry out an architecture evaluation using a real example

(EU6). The requirements for software architectures are then discussed with regard to their further

development, stability, robustness and expandability in the context of evolutionary software

architectures. Participants discuss the documentation of architectures using various templates, and

they practice standards via examples, such as the arc42 template or the ISO/IEC/IEEE 42010 standard

(LO7).

Page 29 from 44

Media forms:

The teaching material consists of a slide script, which is available in electronic form, exercise sheets

and programme examples. Seminar-style teaching with whiteboard, PC projector and presentation

slides, in which examples of the theoretical content are illustrated as well as demonstrations of sample

programmes and interactive programme development. Participants work individually or in groups on

exercises on the topic of software architecture under the supervision of lecturers.

Literature:

• Bass, Len et al (2013): Software architecture in practice. 3rd edition. Upper Saddle River,

NJ ; Munich [et al.] : Addison-Wesley

• Clements, Paul et al. (2011): Evaluating Software Architectures: Methods and Case Studies.
Boston, Mass.; Munich [et al.] Addison-Wesley.

• Eilebrecht, Karl and Starke Gernot (2019): Patterns kompakt: Design patterns for
effective software development. 5th edition. Berlin, Heidelberg: Springer Vieweg.

• Evans, Eric (2009): Domain Driven Design - Tackling Complexity in the Heart of Business
Software. Boston; Munich [and others]: Addison-Wesley.

• Fowler, Martin (2002): Patterns of Enterprise Application Architecture. Addison-Wesley.
• Gharbi, Mahbouba et al (2018): Basic knowledge for software architects: Training and further

education according to the iSAQB standard for Certified Professional for Software Architecture -
Foundation Level. 3rd edition. Heidelberg, dpunkt.

• Goll, Joachim (2018): Design principles and construction concepts in software engineering:
strategies for weakly coupled, correct and stable software. Wiesbaden: Springer Vieweg.

• Reussner, Ralf (ed.) (2009): Handbook of Software Architecture. 2nd edition. Heidelberg: dpunkt.

• Lilienthal, Carola (2017): Long-lived software architectures: analysing, limiting and reducing
technical debt. 2nd edition. Heidelberg: dpunkt.

• Starke, Gernot (2018): Effective software architectures: a practical guide. 8th ed. Munich:
Hanser.

• Vogel, Oliver et al. (2009): Software-Architektur: Grundlagen - Konzepte - Praxis. 2nd edition.
Spektrum Akademischer Verlag.

Page 30 from 44

M 8 Software project 1

Module: Software project 1

Abbreviation: M 8

Subtitle:

Courses: Project

Module coordinator: Prof. Dr. Martin Schmollinger

Lecturer(s): Supervisors from companies, possibly also professors
of the programme

Language: English

Assignment to the curriculum: Compulsory subject, 2nd semester

Teaching form / SWS: Project / The proportion of attendance time
varies greatly depending on the chosen project
method and organisation.

Labour input: 150 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: All modules of the 1st semester.

Study/examination achievements/form of
examination:

Project work, presentation

Module objectives:

A software project is carried out as part of the Master's programme. In this project, the knowledge

learnt can be deepened in an application-oriented manner. Didactically, the Software Project 1 module

lays the foundation for the successful implementation of the project in the Software Project 2 module.

In the Software Project 1 module, participants should apply the professional skills they have acquired

so far to set up a comprehensive software project and develop them further in a practice- oriented manner.

Furthermore, they should reflect on the project assignment with regard to ethical issues and discuss them

with the lecturers.

In addition, considerations should already be made during the set-up phase of the project as to how data

protection can be guaranteed in the software to be created and during development.

Page 31 from 44

Intended learning outcomes

Knowledge:

Participants will become familiar with the scientific and practice-oriented methods for organising and

managing software projects. They will understand supporting tools for software project management.

They will learn about fundamental topics from the respective application domain. They will be familiar with

with systems, software architectures, technologies and frameworks for software development. They

will acquire understanding regarding the basic principles of professional ethics in software development

and the concepts of responsibility, value and dilemma.

Skills:

Participants can use relevant methods to systematically create a project organisation, taking into account

the division and consolidation of work. They can document and communicate the work status

appropriately and adjust the work plan and schedule if necessary. You can use the technologies,

frameworks and tools necessary for the realisation of the project. They are able to explain the patterns

and software architectures used. You can explain measures to protect personal data. They can present

the results of the project group to an expert audience and with specialised visual support at a high level.

Expertise:

Participants have solid technical skills and improved methodological competences. The participants'

communication and teamwork skills are further developed. Their social and problem- solving skills are

strengthened. They will be able to recognise the challenges of professional ethics in the work of

software developers in a specific project situation.

Contents:

Moderated by the lecturer/supervisor but largely independent set-up of a software project for a

comprehensive task from any application domain. As part of the module, methods, processes, roles,

infrastructures, tools, frameworks, as well as technologies and systems are presented, selected, set up

or deepened. In addition, the first simple increments of the software product are created for practice.

The project is carried out in groups of approx. 4 - 6 participants. The project result and the project

experiences are to be presented to an expert audience in the form of a final presentation and defended

in a subsequent discussion. The project results must be summarised in a project documentation.

Media forms: Project-specific media forms.

Literature: Depending on the respective task

Page 32 from 44

M 9 Software project 2

Module: Software project 2

Abbreviation: M 9

Subtitle:

Courses: Project

Module coordinator: Prof. Dr. Martin Schmollinger

Lecturer(s): Supervisors from companies, possibly also professors
of the programme

Language: English

Assignment to the curriculum: Compulsory subject 3rd semester

Teaching form / SWS: Project / The proportion of attendance time
varies greatly depending on the chosen project
method and organisation.

Labour input: 300 hours in total

Credit points: 10 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: Software project 1

Study/examination achievements/form of
examination:

Project work, presentation

Module objectives:

A software project is a part of the Master's programme. In this project, the acquired knowledge can be

deepened in an application-oriented manner. Didactically, the Software Project 1 module lays the

foundation for the successful implementation of the project in the Software Project 2 module.

In the Software Project 2 module, participants will carry out a software project based on the

methodological and technical skills they have already acquired. The aim at the end of the module is to have

created a software product using modern software engineering methods and technologies in a

development team.

Page 33 from 44

Intended learning outcomes

Knowledge:

Participants will become familiar with the complexity of applying scientific and practice-orientated methods

for implementing software projects. They will be familiar with the details of using supporting software

project management tools. They will learn about advanced topics from the respective application

domain. They will understand the details of the programming frameworks, systems, software

architecture and patterns used.

Skills:

Participants will understand with the tasks of the various roles in the context of software development

methods and can take on these roles themselves. They are able to understand the methods for

estimating effort and prioritising tasks and have gained experience in their application. You can use the

technologies, frameworks and tools necessary for the realisation of the project with confidence. They

are able to explain and apply the patterns and software architectures used. They can present the results

of the project group to an expert audience and with specialised visual support at a high level.

Expertise:

Participants have advanced technical skills and enhanced methodological expertise. Participants'

communication and teamwork skills are significantly enhanced. Their social and problem-solving skills

are strengthened.

Contents:

The Software Project 2 module focuses on the implementation of a software project. Further topics

such as scaling the software are also considered.

Partly moderated by the lecturer/supervisor but largely independent software project for a

comprehensive task from any application domain. The task is worked on in a team of participants. The size

of the team is 4-6 developers. The project result and the project findings must be presented to an expert

audience in the form of a final presentation and defended in a subsequent discussion. The project results

must be summarised in a project documentation.

Media forms:

Project-specific media forms.

Literature:

Depending on the respective task

Page 34 from 44

M 10/M 11 Compulsory elective module 1 and 2

W1 Distributed Ledger Technology

Module: Distributed Ledger Technology

Abbreviation: M 10 / M11

Subtitle: W1

Courses: Lecture

Module coordinator: Prof. Dr. Marcus Schöller

Lecturer(s): Prof. Dr. Peter Hertkorn
Prof. Dr. Marcus Schöller

Language: English

Assignment to the curriculum: Professional Software Engineering Master,
elective subject, 3rd semester

Teaching form / SWS: Lecture: 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: None

Study/examination achievements/form of
examination:

Project work

Module objectives:

Blockchain technologies are the current manifestation of the solution for distributed, consistent and
trustworthy data storage. They belong to a broader group of solutions: Distributed Ledger Technology
(DLT). This module deals with the underlying concepts and selected methods and procedures in the field
of DLT, discusses current developments in this area and examines and evaluates their possible
applications. Successful completion of the module should ensure that students are able to weigh up the
use of DLT, select and understand suitable technologies and use them to develop applications. Building
on this, students will acquire knowledge about the operation of DLT applications.

Page 35 from 44

Intended learning outcomes:

Knowledge:
After successfully completing this module, students will have a full understanding of the underlying
concepts of DLT solutions and will be able to explain the differences between centralised and
decentralised systems. They will have developed an understanding of technical and application- specific
aspects of DLT, in particular different consensus protocols, the levels of decentralised applications and
various technologies for distributed ledgers. They also have knowledge of DLT- based applications and
their development and are able to describe, evaluate and use various methods for creating
decentralised applications. Students will be familiar with current trends and developments in the field
of DLT and will be able to assess and categorise their impact on the field of DLT.

Skills:
Students will be able to analyse given problems with regard to the use of DLT, select suitable
technologies and design and develop applications based on DLT. To this end, they will be familiar with
existing DLT implementations and the requirements for operations. Students will be able to analyse and
evaluate solutions holistically and thus make technically sound decisions on the possible uses of these
technologies.

Expertise:
After completing the module, students will be able to

LE# Learning outcome (LE) Tested by

LE1 to know and assess the basics of DLT. Artefact

LE2 components and their tasks in DLT solutions. Artefact

LE3 Understand and evaluate the use of DLT. Artefact

LE4 Understanding software development methods for DLT and
apply them.

Artefact

Contents:

First, basic concepts of DLT are introduced: Consensus protocol, cryptography and smart contracts
(LE1). Building on this, various DLT solutions are analysed and compared, e.g. Bitcoin, Ethereum,
Hyperledger (LE2, LE3). Finally, concrete application scenarios for DLT will be developed and prototypically
implemented (LO4).

Media forms:

The teaching material consists of a slide script, which is available in electronic form, exercise sheets
and programme examples. Seminar-style teaching with whiteboard, PC projector and presentation
slides, in which examples of the theoretical content are illustrated as well as demonstrations of sample
programmes and interactive programme development. Students work individually or in groups on
exercises relating to DLT with support from the lecturer.

Page 36 from 44

Literature:

• Antonopoulos, Andreas M. (2017): Mastering Bitcoin. 2nd edition. O'Reilly.
• Antonopoulos, Andreas M. and Gavin Wood (2018): Mastering Ethereum: Building Smart

Contracts and Dapps. O'Reilly.

• Cachin, Christian and Marko Vukolic (2017): "Blockchain Consensus Protocols in the Wild", CoRR,
eprint arXiv:1707.01873, https://dblp.org/rec/bib/journals/corr/CachinV17.

• Drescher, Daniel (2017): Blockchain Basics: A Non-Technical Introduction in 25 Steps. Apress.

• Kosba, Ahmed et al. (2016): "Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts," 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
2016, pp. 839-858.

• Laurence, Tiana (2017): Blockchain for Dummies. For Dummies.
• Raval, Siraj (2016): Decentralised Applications: Harnessing Bitcoin's Blockchain Technol- ogy.

O'Reilly.

• Swan, Melanie (2015): Blockchain: Blueprint for a New Economy. O'Reilly.
• Tapscott, Don and Alex Tapscott (2016): Blockchain Revolution: How the Technology Be- hind

Bitcoin Is Changing Money, Business, and the World. Portfolio.

• Wattenhofer, Roger (2017): Distributed Ledger Technology: The Science of the Blockchain. 2nd
edition. CreateSpace Independent Publishing.

Page 37 from 44

W2 Digital Product Management

Module: Digital Product Management

Abbreviation: M10/M11

Subtitle: W2

Courses:

Semester of study:

Module coordinator: Prof. Dr. Jürgen Münch

Lecturer(s): Prof. Dr. Jürgen Münch

Language: English

Assignment to the curriculum: Compulsory elective module, 3rd semester

Teaching form / SWS: Lecture: 4 SWS

Labour input: Classroom study: 60 hours
 Self-study: 90 hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite: None

Study/examination achievements/form of
examination:

Lecture:

Module objectives:

The "Product Management" module enables participants to plan the development of digital or digitalised
products and coordinate the teams involved in such a way that customer and business goals are
successfully achieved. Participants ill gain in-depth knowledge of product conception, digital
prototyping, user experience, ideation, data science, validation and leadership.

The development of software-based products today takes place in an environment in which
technologies and markets are changing rapidly. Product requirements cannot usually be defined in
advance. Nor can you ask customers what features they would like. Steve Jobs once said, “It is not the
customer's job to find out what they want.” In situations like this, traditional approaches to product
development with upstream requirements definition are not suitable. But how do you still come up with
products that customers want and need? There are new development approaches for this, such as dual-
track agile, which combine agile software development methods with modern product management
methods.

Page 38 from 44

It is particularly important for software developers to have a basic knowledge of product management, as
they are often involved in the development and implementation of product strategies. The module
prepares participants for professions such as product manager, product owner or technical
development manager. The knowledge imparted is also particularly important for founders,
members/leaders of innovation teams, product developers, user experience designers, software
engineers and product marketing managers.

Intended learning outcomes

Knowledge:

Participants will be able to describe product vision, identify important customer problems and product
assumptions, develop experiments to validate these assumptions and develop a product strategy
iteratively. In addition, students will have the necessary knowledge for the management of product
development and the coordination and leadership of product teams.

Skills:

Participants will be able to independently apply suitable methods, techniques and tools of agile product
management in order to make important product decisions. They develop product visions, roadmaps,
learning prototypes and other artefacts. They will validate ideas and products in terms of their viability.

Expertise:

Participants will be able to assess different product management methods, select suitable methods and
apply them. In doing so, students ensure that customer benefits are generated, business goals are
pursued, development costs are reduced and development risks are controlled. The practical relevance
of the topic is taught in group exercises and by means of concrete examples and case studies.

Contents:

• Role of the product manager and the product owner

• Principles of product management

• Definition of a product vision

• Development of a product strategy

• Important procedures for identifying customer benefits

• Definition of business and customer goals

• Design thinking, creativity

• Identification and evaluation of various development options

• Definition of good product hypotheses

• Designing, conducting and analysing experiments to validate critical product hypotheses

• Minimum Viable Product (MVP)

• Development of roadmaps

• Release Management

• Impact Mapping

• Value Mapping

• User story mapping

• Metrics, analytics & insights

• Lean Startup

• Customer Development

• Minimum Viable Products

Page 39 from 44

• Corporate culture and product leadership

• Organisational aspects of product management

Media forms:

• Lecture with integrated exercises

• Seminar part with practical exercises

• Lecture material in electronic form

Literature:

• Alvarez, C. (2014): Lean Customer Development: Building Products Your Customers Will Buy.

O'Reilly.

• Bland, D. (2019): Testing Business Ideas: A Field Guide for Rapid Experimentation, Wilely,

• Cagan, M. (2017): INSPIRED: How to Create Tech Products Customers Love. 2nd edition.
Wiley.

• Cagan, M. (2020): EMPOWERED: Ordinary People, Extraordinary Products. Wiley.

• Gothelf, J., Seiden, J. (2016): Lean UX: Designing Great Products with Agile Teams. O'Reilly.

• Klein, L. (2016): Build Better Products. A Modern Approach to Building Successful User-Centred
Products. Rosenfeld.

• Knapp, J., Zeratsky, J., Kowitz, B. (2016): Sprint: How to Solve Big Problems and Test New Ideas in Just
Five Days. Simon & Schuster.

• Kohavi, R., Tang, D., Xu, Y. (2020): Trustworthy Online Controlled Experiments: A Practical Guide to
A/B Testing. Cambridge University Press.

• Lombardo, C. T., McCarthy, B., Ryan, E., Connors, M. (2017): Product Roadmaps Re- launched:
A Practical Guide to Prioritising Opportunities, Aligning Teams, and Delivering Value to
Customers and Stakeholders. O'Reilly.

• Nguyen-Duc, A., Münch, J., Prikladnicki, R., Wang, X., Abrahamsson, P., Eds. (2020): Funda- mentals of
Software Startups - Essential Engineering and Business Aspects. Springer.

• Olsen, D. (2015): The Lean Product Playbook - How to Innovate with Minimum Viable Prod- ucts
and Rapid Customer Feedback. Wiley.

• Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch. J. The RIGHT Model for Continu- ous
Experimentation. Journal of Systems and Software, 123:292-305, January 2017.

• Pichler, R. (2010): Agile Product Management with Scrum. Addison Wesley. 2010.

• Pichler, R. (2016): Strategise: Product Strategy and Product Roadmap Practices for the Digital
Age. Pichler Consulting.

• Ries, E. (2011): Lean Startup - How Constant Innovation Creates Radically Successful Busi- nesses.
Portfolio Penguin. 2011.

Page 40 from 44

W3 Internet of Things

Module: Internet of Things

Abbreviation: M10/M11

Subtitle: W3

Courses:

Semester of study: 3

Module coordinator: Prof. Dr. Natividad Martínez

Lecturer(s): Prof. Dr. Natividad Martínez

Language: English

Assignment to the curriculum: Compulsory elective module, 3rd semester

Teaching form / SWS: Lecture: 4 SWS

Labour input: On-campus study Hours
Self-study Hours

Credit points: 5 ECTS

Prerequisites according to StuPro: None

Recommended prerequisite : None

Study/examination achievements/form of
examination:

Lecture

Module objectives:

The Internet of Things (IoT) describes new ecosystems in which different objects with embedded

computing and communication capabilities can interact with each other and with the user. This module

aims to present students with the basics of the technologies and applications of the Internet of Things

and to practice them by developing an IoT project. This includes learning about embedded hardware and

software, sensor technology, communication protocols, operating systems and software development

environments.

Page 41 from 44

Intended learning outcomes

Knowledge:

• Principles and requirements of ubiquitous systems.
• IoT architectures for the acquisition and aggregation of data.
• Properties of the sensors and actuators for interaction with the environment and with the users.

• Basic hardware and software platforms for IoT systems.
• Data integration through IoT cloud connection.
• Domain-specific business models through IoT: Industry 4.0, automotive and medicine.
• Web-of-Things as an integrative communication platform.

Skills:
Participants will be able to design and develop new systems and products using IoT. They can plan the

architecture across layers; select and prototype suitable hardware, software and communication

protocols and integrate networked information.

Expertise:

LE# Learning outcome (LE) Tested by

LE1 Apply design principles of IoT applications
Elaboration, project

work

LE2 Create and analyse IoT system requirements.
Elaboration, project

work

LE3

Create a prototype IoT application (sensor technology,

hardware, software, communication and integration of

networked information)

Project work

LE4
Use modern development environments and tools.

Project work

LE5 Working in a team to solve complex tasks. Project work

LE6
competently present and discuss IoT solutions using technical

language.
Presentation

LE7
Evaluate IoT solutions in terms of their feasibility and business

relevance
Peer review

Page 42 from 44

Contents:

The lecture introduces the basics of the Internet of Things (IoT). The lecture includes a seminar- based

introduction to the topics together with small exercises that enable students to design their own IoT

solution in a team project (L5). In addition to the design principles and architectures for IoT (LE1), students

will learn about the special features of IoT system requirements (LE2). The basic technologies (sensors

and actuators, communication protocols, embedded systems, integration of networked information) are

presented and prototypically used in the project (LO3). To this end, students will learn the typical

development methods, environments and tools (LO4). Students present the results and findings of their

project (LO6) and assess the approaches of other teams using peer review methods (LO7).

The module covers the following topics:

• Introduction to IoT: Design principles and requirements.
• Data acquisition and interaction through sensors and actuators.
• IoT architectures, communication networks and protocols.
• From computer to smart object through embedded systems
• IoT applications and development methods
• IoT platforms for integration with other information processing systems
• Web of Things (WoT)

Media forms:

Different media forms are selected depending on the content and expertise. Some topics are engaged

with in the traditional way using slide scripts, which are projected using a projector and can be deepened,

explained and illustrated using the blackboard. The module comprises a lecture with an integrated

exercise. To this end, the students will receive information about the necessary installation and the

requirements for the systems, which they should develop prototypically under the supervision of the

lecturers in the laboratory. The students will then apply the skills they have learnt in their own project

and present their results.

The lecture is part of the "International Programme" of the Faculty of Computer Science and is held in
English. The examinations may be held in German and/or English.

Literature:

• Greengard, Samuel (2015): The Internet of Things (MIT Press Essential Knowledge series). ISBN:
9780262527736.

• Mattern F., Flörkemeier, Ch. (2010): From the Internet of Computers to the Internet of
Things. Informatik Spektrum, Vol. 33, no. 2, pp. 107-121

• Porter, M.E., Heppelmann, J.E., (2014): How Smart, Connected Products Are
Transforming Competition. Harvard Business Review 92, no. 11, pp. 64-88

• Weiser, M. The computer for the 21st century

• In addition, current articles from specialist journals and conferences as well as Internet
resources.

Page 43 from 44

M 12 Master Thesis

Module: Master thesis

Abbreviation: M 12

Subtitle:

Courses: Master Thesis

Semester of study: Each

Module coordinator: Prof. Dr. Martin Schmollinger

Lecturer(s): All professors involved in the Master's programme

Language: English

Assignment to the curriculum: Compulsory subject, 4th semester

Teaching form / SWS: Master's thesis / No compulsory attendance time

Labour input: 900 hours

Credit points: 30 ECTS

Prerequisites according to StuPro: 50 ECTS for previous studies with at least 210 ECTS,
otherwise 80 ECTS

Recommended prerequisite: All other courses of the Master's programme
Professional Software Engineering

Study/examination achievements/form of
examination:

Master's thesis / colloquium

Module objectives:

The Master's thesis is a final examination paper with which the participants prove that they can

independently work on a comprehensive task in computer science according to basic scientific methods

within a given time frame and defend the procedure and the goals achieved.

Page 44 from 44

Intended learning outcomes

Knowledge:

Participants have comprehensive knowledge of the subject area of the thesis. Participants are familiar

with all formal requirements for writing academic papers.

Skills:

Participants will be able to work independently on a completed topic using scientific methods. They will have

mastered the relevant techniques for writing a scientific paper, such as structuring, citing and maintaining

an appropriate external form.

Expertise:

Participants are capable of abstraction and modelling for the purpose of practical analysis, conception

and design. They have analysis, design, realisation and project management skills. They are able to develop

goal-orientated solutions.

Contents:

Topics for Master's theses relate to tasks in computer science that are relevant to the discipline today

and for the foreseeable future. The topics include several information technology, software technology,

media, psychological, didactic, economic or other aspects that have a complex connection to the

solution of the task.

Media forms:

Technical and methodological support for participants through counselling and support meetings, which

also take place on site for company-related work. Participants are also required to research and

reference relevant information and, if necessary, prove the relevance and goal- orientation in the

company environment. Presentations by the participants regarding the progress of their work and further

planning are also included.

Literature:

Depending on the respective task

